accessors module¶
Custom Pandas accessors for returns.
Methods can be accessed as follows:
- ReturnsSRAccessor ->
pd.Series.vbt.returns.* - ReturnsDFAccessor ->
pd.DataFrame.vbt.returns.*
Note
The underlying Series/DataFrame must already be a return series. To convert price to returns, use ReturnsAccessor.from_value().
Grouping is only supported by the methods that accept the group_by argument.
Accessors do not utilize caching.
There are three options to compute returns and get the accessor:
>>> from vectorbtpro import *
>>> price = pd.Series([1.1, 1.2, 1.3, 1.2, 1.1])
>>> # 1. pd.Series.pct_change
>>> rets = price.pct_change()
>>> ret_acc = rets.vbt.returns(freq='d')
>>> # 2. vectorbtpro.generic.accessors.GenericAccessor.to_returns
>>> rets = price.vbt.to_returns()
>>> ret_acc = rets.vbt.returns(freq='d')
>>> # 3. vectorbtpro.returns.accessors.ReturnsAccessor.from_value
>>> ret_acc = pd.Series.vbt.returns.from_value(price, freq='d')
>>> # vectorbtpro.returns.accessors.ReturnsAccessor.total
>>> ret_acc.total()
0.0
The accessors extend vectorbtpro.generic.accessors.
Defaults¶
ReturnsAccessor accepts defaults dictionary where you can pass defaults for arguments used throughout the accessor, such as
start_value: The starting value.window: Window length.minp: Minimum number of observations in a window required to have a value.ddof: Delta Degrees of Freedom.risk_free: Constant risk-free return throughout the period.levy_alpha: Scaling relation (Levy stability exponent).required_return: Minimum acceptance return of the investor.cutoff: Decimal representing the percentage cutoff for the bottom percentile of returns.period: Number of observations for annualization. Can be an integer or "dt_period".
Defaults as well as bm_returns and year_freq can be set globally using settings:
>>> benchmark = pd.Series([1.05, 1.1, 1.15, 1.1, 1.05])
>>> bm_returns = benchmark.vbt.to_returns()
>>> vbt.settings.returns['bm_returns'] = bm_returns
Stats¶
Hint
>>> ret_acc.stats()
Start 0
End 4
Duration 5 days 00:00:00
Total Return [%] 0
Benchmark Return [%] 0
Annualized Return [%] 0
Annualized Volatility [%] 184.643
Sharpe Ratio 0.691185
Calmar Ratio 0
Max Drawdown [%] 15.3846
Omega Ratio 1.08727
Sortino Ratio 1.17805
Skew 0.00151002
Kurtosis -5.94737
Tail Ratio 1.08985
Common Sense Ratio 1.08985
Value at Risk -0.0823718
Alpha 0.78789
Beta 1.83864
dtype: object
Note
StatsBuilderMixin.stats() does not support grouping.
Plots¶
Hint
ReturnsAccessor class has a single subplot based on ReturnsAccessor.plot_cumulative():
ReturnsAccessor class¶
ReturnsAccessor(
wrapper,
obj=None,
bm_returns=None,
log_returns=False,
year_freq=None,
defaults=None,
sim_start=None,
sim_end=None,
**kwargs
)
Accessor on top of return series. For both, Series and DataFrames.
Accessible via pd.Series.vbt.returns and pd.DataFrame.vbt.returns.
Args
obj:pd.Seriesorpd.DataFrame- Pandas object representing returns.
bm_returns:array_like- Pandas object representing benchmark returns.
log_returns:bool- Whether returns and benchmark returns are provided as log returns.
year_freq:any- Year frequency for annualization purposes.
defaults:dict- Defaults that override
defaultsin returns. sim_start:int,datetime_like,or array_like- Simulation start per column.
sim_end:int,datetime_like,or array_like- Simulation end per column.
**kwargs- Keyword arguments that are passed down to GenericAccessor.
Superclasses
- Analyzable
- AttrResolverMixin
- BaseAccessor
- Cacheable
- Chainable
- Comparable
- Configured
- ExtPandasIndexer
- GenericAccessor
- HasSettings
- IndexApplier
- IndexingBase
- Itemable
- PandasIndexer
- Paramable
- Pickleable
- PlotsBuilderMixin
- Prettified
- SimRangeMixin
- StatsBuilderMixin
- Wrapping
Inherited members
- AttrResolverMixin.deep_getattr()
- AttrResolverMixin.post_resolve_attr()
- AttrResolverMixin.pre_resolve_attr()
- AttrResolverMixin.resolve_attr()
- AttrResolverMixin.resolve_shortcut_attr()
- BaseAccessor.align()
- BaseAccessor.align_to()
- BaseAccessor.apply()
- BaseAccessor.apply_and_concat()
- BaseAccessor.apply_to_index()
- BaseAccessor.broadcast()
- BaseAccessor.broadcast_combs()
- BaseAccessor.broadcast_to()
- BaseAccessor.column_stack()
- BaseAccessor.combine()
- BaseAccessor.concat()
- BaseAccessor.cross()
- BaseAccessor.cross()
- BaseAccessor.cross_with()
- BaseAccessor.empty()
- BaseAccessor.empty_like()
- BaseAccessor.eval()
- BaseAccessor.get()
- BaseAccessor.indexing_setter_func()
- BaseAccessor.items()
- BaseAccessor.make_symmetric()
- BaseAccessor.repeat()
- BaseAccessor.resolve_shape()
- BaseAccessor.row_stack()
- BaseAccessor.set()
- BaseAccessor.set_between()
- BaseAccessor.split()
- BaseAccessor.split_apply()
- BaseAccessor.tile()
- BaseAccessor.to_1d_array()
- BaseAccessor.to_2d_array()
- BaseAccessor.to_data()
- BaseAccessor.to_dict()
- BaseAccessor.unstack_to_array()
- BaseAccessor.unstack_to_df()
- Cacheable.get_ca_setup()
- Chainable.pipe()
- Configured.copy()
- Configured.equals()
- Configured.get_writeable_attrs()
- Configured.prettify()
- Configured.replace()
- Configured.resolve_merge_kwargs()
- Configured.update_config()
- GenericAccessor.ago()
- GenericAccessor.all_ago()
- GenericAccessor.any_ago()
- GenericAccessor.apply_along_axis()
- GenericAccessor.apply_and_reduce()
- GenericAccessor.apply_mapping()
- GenericAccessor.areaplot()
- GenericAccessor.barplot()
- GenericAccessor.bfill()
- GenericAccessor.binarize()
- GenericAccessor.boxplot()
- GenericAccessor.bshift()
- GenericAccessor.cls_dir
- GenericAccessor.column_apply()
- GenericAccessor.column_only_select
- GenericAccessor.config
- GenericAccessor.corr()
- GenericAccessor.count()
- GenericAccessor.cov()
- GenericAccessor.crossed_above()
- GenericAccessor.crossed_below()
- GenericAccessor.cumprod()
- GenericAccessor.cumsum()
- GenericAccessor.demean()
- GenericAccessor.describe()
- GenericAccessor.df_accessor_cls
- GenericAccessor.diff()
- GenericAccessor.digitize()
- GenericAccessor.ewm_mean()
- GenericAccessor.ewm_std()
- GenericAccessor.expanding_apply()
- GenericAccessor.expanding_corr()
- GenericAccessor.expanding_cov()
- GenericAccessor.expanding_idxmax()
- GenericAccessor.expanding_idxmin()
- GenericAccessor.expanding_max()
- GenericAccessor.expanding_mean()
- GenericAccessor.expanding_min()
- GenericAccessor.expanding_ols()
- GenericAccessor.expanding_rank()
- GenericAccessor.expanding_std()
- GenericAccessor.expanding_zscore()
- GenericAccessor.fbfill()
- GenericAccessor.ffill()
- GenericAccessor.fillna()
- GenericAccessor.find_pattern()
- GenericAccessor.flatten_grouped()
- GenericAccessor.fshift()
- GenericAccessor.get_ranges()
- GenericAccessor.group_select
- GenericAccessor.groupby_apply()
- GenericAccessor.groupby_transform()
- GenericAccessor.heatmap()
- GenericAccessor.histplot()
- GenericAccessor.idxmax()
- GenericAccessor.idxmin()
- GenericAccessor.iloc
- GenericAccessor.indexing_kwargs
- GenericAccessor.lineplot()
- GenericAccessor.loc
- GenericAccessor.ma()
- GenericAccessor.map()
- GenericAccessor.mapping
- GenericAccessor.max()
- GenericAccessor.maxabs_scale()
- GenericAccessor.mean()
- GenericAccessor.median()
- GenericAccessor.min()
- GenericAccessor.minmax_scale()
- GenericAccessor.msd()
- GenericAccessor.normalize()
- GenericAccessor.obj
- GenericAccessor.overlay_with_heatmap()
- GenericAccessor.pct_change()
- GenericAccessor.plot()
- GenericAccessor.plot_against()
- GenericAccessor.plot_pattern()
- GenericAccessor.power_transform()
- GenericAccessor.product()
- GenericAccessor.proximity_apply()
- GenericAccessor.qqplot()
- GenericAccessor.quantile_transform()
- GenericAccessor.range_only_select
- GenericAccessor.ranges
- GenericAccessor.rank()
- GenericAccessor.realign()
- GenericAccessor.realign_closing()
- GenericAccessor.realign_opening()
- GenericAccessor.rebase()
- GenericAccessor.rec_state
- GenericAccessor.reduce()
- GenericAccessor.resample_apply()
- GenericAccessor.resample_between_bounds()
- GenericAccessor.resample_to_index()
- GenericAccessor.resolve_mapping()
- GenericAccessor.robust_scale()
- GenericAccessor.rolling_all()
- GenericAccessor.rolling_any()
- GenericAccessor.rolling_apply()
- GenericAccessor.rolling_corr()
- GenericAccessor.rolling_cov()
- GenericAccessor.rolling_idxmax()
- GenericAccessor.rolling_idxmin()
- GenericAccessor.rolling_max()
- GenericAccessor.rolling_mean()
- GenericAccessor.rolling_min()
- GenericAccessor.rolling_ols()
- GenericAccessor.rolling_pattern_similarity()
- GenericAccessor.rolling_prod()
- GenericAccessor.rolling_rank()
- GenericAccessor.rolling_std()
- GenericAccessor.rolling_sum()
- GenericAccessor.rolling_zscore()
- GenericAccessor.row_apply()
- GenericAccessor.scale()
- GenericAccessor.scatterplot()
- GenericAccessor.self_aliases
- GenericAccessor.shuffle()
- GenericAccessor.squeeze_grouped()
- GenericAccessor.sr_accessor_cls
- GenericAccessor.std()
- GenericAccessor.sum()
- GenericAccessor.to_daily_log_returns()
- GenericAccessor.to_daily_returns()
- GenericAccessor.to_log_returns()
- GenericAccessor.to_mapped()
- GenericAccessor.to_returns()
- GenericAccessor.transform()
- GenericAccessor.ts_heatmap()
- GenericAccessor.value_counts()
- GenericAccessor.vidya()
- GenericAccessor.volume()
- GenericAccessor.wm_mean()
- GenericAccessor.wrapper
- GenericAccessor.wwm_mean()
- GenericAccessor.wwm_std()
- GenericAccessor.xloc
- GenericAccessor.zscore()
- HasSettings.get_path_setting()
- HasSettings.get_path_settings()
- HasSettings.get_setting()
- HasSettings.get_settings()
- HasSettings.has_path_setting()
- HasSettings.has_path_settings()
- HasSettings.has_setting()
- HasSettings.has_settings()
- HasSettings.reset_settings()
- HasSettings.resolve_setting()
- HasSettings.resolve_settings_paths()
- HasSettings.set_settings()
- IndexApplier.add_levels()
- IndexApplier.drop_duplicate_levels()
- IndexApplier.drop_levels()
- IndexApplier.drop_redundant_levels()
- IndexApplier.rename_levels()
- IndexApplier.select_levels()
- PandasIndexer.xs()
- Pickleable.decode_config()
- Pickleable.decode_config_node()
- Pickleable.dumps()
- Pickleable.encode_config()
- Pickleable.encode_config_node()
- Pickleable.file_exists()
- Pickleable.getsize()
- Pickleable.load()
- Pickleable.loads()
- Pickleable.modify_state()
- Pickleable.resolve_file_path()
- Pickleable.save()
- PlotsBuilderMixin.build_subplots_doc()
- PlotsBuilderMixin.override_subplots_doc()
- PlotsBuilderMixin.plots()
- SimRangeMixin.column_stack_sim_end()
- SimRangeMixin.column_stack_sim_start()
- SimRangeMixin.fit_fig_to_sim_range()
- SimRangeMixin.get_sim_duration()
- SimRangeMixin.get_sim_end()
- SimRangeMixin.get_sim_end_index()
- SimRangeMixin.get_sim_start()
- SimRangeMixin.get_sim_start_index()
- SimRangeMixin.resample_sim_end()
- SimRangeMixin.resample_sim_start()
- SimRangeMixin.resolve_sim_end()
- SimRangeMixin.resolve_sim_end_value()
- SimRangeMixin.resolve_sim_start()
- SimRangeMixin.resolve_sim_start_value()
- SimRangeMixin.row_stack_sim_end()
- SimRangeMixin.row_stack_sim_start()
- SimRangeMixin.sim_duration
- SimRangeMixin.sim_end
- SimRangeMixin.sim_end_index
- SimRangeMixin.sim_end_indexing_func()
- SimRangeMixin.sim_start
- SimRangeMixin.sim_start_index
- SimRangeMixin.sim_start_indexing_func()
- StatsBuilderMixin.build_metrics_doc()
- StatsBuilderMixin.override_metrics_doc()
- StatsBuilderMixin.stats()
- Wrapping.as_param()
- Wrapping.regroup()
- Wrapping.resolve_stack_kwargs()
- Wrapping.select_col()
- Wrapping.select_col_from_obj()
Subclasses
alpha method¶
ReturnsAccessor.alpha(
bm_returns=None,
risk_free=None,
sim_start=None,
sim_end=None,
jitted=None,
chunked=None,
wrap_kwargs=None
)
Alpha.
See alpha_nb().
ann_factor property¶
Annualization factor.
ann_factor_to_year_freq class method¶
Convert annualization factor into year frequency.
annual method¶
Annual returns.
annualized method¶
ReturnsAccessor.annualized(
period=None,
sim_start=None,
sim_end=None,
jitted=None,
chunked=None,
wrap_kwargs=None
)
Annualized return.
annualized_volatility method¶
ReturnsAccessor.annualized_volatility(
levy_alpha=None,
ddof=None,
sim_start=None,
sim_end=None,
jitted=None,
chunked=None,
wrap_kwargs=None
)
Annualized volatility.
See annualized_volatility_nb().
auto_detect_ann_factor class method¶
Auto-detect annualization factor from a datetime index.
beta method¶
ReturnsAccessor.beta(
bm_returns=None,
ddof=None,
sim_start=None,
sim_end=None,
jitted=None,
chunked=None,
wrap_kwargs=None
)
Beta.
See beta_nb().
bm_returns property¶
Benchmark returns.
bm_returns_acc property¶
ReturnsAccessor.get_bm_returns_acc() with default arguments.
calmar_ratio method¶
ReturnsAccessor.calmar_ratio(
period=None,
sim_start=None,
sim_end=None,
jitted=None,
chunked=None,
wrap_kwargs=None
)
Calmar ratio.
See calmar_ratio_nb().
capture_ratio method¶
ReturnsAccessor.capture_ratio(
bm_returns=None,
period=None,
sim_start=None,
sim_end=None,
jitted=None,
chunked=None,
wrap_kwargs=None
)
Capture ratio.
See capture_ratio_nb().
common_sense_ratio method¶
ReturnsAccessor.common_sense_ratio(
sim_start=None,
sim_end=None,
jitted=None,
chunked=None,
wrap_kwargs=None
)
Common Sense Ratio (CSR).
cond_value_at_risk method¶
ReturnsAccessor.cond_value_at_risk(
cutoff=None,
sim_start=None,
sim_end=None,
noarr_mode=True,
jitted=None,
chunked=None,
wrap_kwargs=None
)
Conditional Value at Risk (CVaR).
cumulative method¶
ReturnsAccessor.cumulative(
start_value=None,
sim_start=None,
sim_end=None,
jitted=None,
chunked=None,
wrap_kwargs=None
)
Cumulative returns.
daily method¶
Daily returns.
deannualize method¶
Deannualize a value.
defaults property¶
Defaults for ReturnsAccessor.
Merges defaults from returns with defaults from ReturnsAccessor.
deflated_sharpe_ratio method¶
Deflated Sharpe Ratio (DSR).
Expresses the chance that the advertised strategy has a positive Sharpe ratio.
down_capture_ratio method¶
ReturnsAccessor.down_capture_ratio(
bm_returns=None,
period=None,
sim_start=None,
sim_end=None,
jitted=None,
chunked=None,
wrap_kwargs=None
)
Up-market capture ratio.
downside_risk method¶
ReturnsAccessor.downside_risk(
required_return=None,
sim_start=None,
sim_end=None,
jitted=None,
chunked=None,
wrap_kwargs=None
)
Downside risk.
See downside_risk_nb().
drawdown method¶
ReturnsAccessor.drawdown(
sim_start=None,
sim_end=None,
jitted=None,
chunked=None,
wrap_kwargs=None
)
Relative decline from a peak.
drawdowns property¶
ReturnsAccessor.get_drawdowns() with default arguments.
final_value method¶
ReturnsAccessor.final_value(
start_value=None,
sim_start=None,
sim_end=None,
jitted=None,
chunked=None,
wrap_kwargs=None
)
Final value.
See final_value_nb().
from_value class method¶
ReturnsAccessor.from_value(
value,
init_value=nan,
log_returns=False,
sim_start=None,
sim_end=None,
jitted=None,
chunked=None,
wrapper=None,
wrapper_kwargs=None,
return_values=False,
**kwargs
)
Returns a new ReturnsAccessor instance with returns calculated from value.
get_ann_factor class method¶
Get the annualization factor from the year and data frequency.
get_bm_returns_acc method¶
Get accessor for benchmark returns.
get_drawdowns method¶
Generate drawdown records of cumulative returns.
See Drawdowns.
get_period class method¶
ReturnsAccessor.get_period(
period=None,
sim_start=None,
sim_end=None,
wrapper=None,
group_by=None
)
Prepare period.
get_year_freq class method¶
Resolve year frequency.
If year_freq is "auto", uses ReturnsAccessor.auto_detect_ann_factor(). If year_freq is "auto_[method_name], also applies the methodnp.[method_name]to the annualization factor, mostly to round it. Ifyear_freqis "index_[method_name]", uses [ReturnsAccessor.parse_ann_factor()](https://vectorbt.pro/pvt_12537e02/api/returns/accessors/#vectorbtpro.returns.accessors.ReturnsAccessor.parse_ann_factor "vectorbtpro.returns.accessors.ReturnsAccessor.parse_ann_factor") to determine the annualization factor by applying the method topd.DatetimeIndex.year`.
indexing_func method¶
Perform indexing on ReturnsAccessor.
information_ratio method¶
ReturnsAccessor.information_ratio(
bm_returns=None,
ddof=None,
sim_start=None,
sim_end=None,
jitted=None,
chunked=None,
wrap_kwargs=None
)
Information ratio.
log_returns property¶
Whether returns and benchmark returns are provided as log returns.
max_drawdown method¶
ReturnsAccessor.max_drawdown(
sim_start=None,
sim_end=None,
jitted=None,
chunked=None,
wrap_kwargs=None
)
Maximum Drawdown (MDD).
See max_drawdown_nb().
Yields the same out as max_drawdown of ReturnsAccessor.drawdowns.
metrics class variable¶
Metrics supported by ReturnsAccessor.
HybridConfig(
start_index=dict(
title='Start Index',
calc_func='sim_start_index',
tags='wrapper'
),
end_index=dict(
title='End Index',
calc_func='sim_end_index',
tags='wrapper'
),
total_duration=dict(
title='Total Duration',
calc_func='sim_duration',
apply_to_timedelta=True,
tags='wrapper'
),
total_return=dict(
title='Total Return [%]',
calc_func='total',
post_calc_func=<function ReturnsAccessor.<lambda> at 0x15f5a93a0>,
tags='returns'
),
bm_return=dict(
title='Benchmark Return [%]',
calc_func='bm_returns_acc.total',
post_calc_func=<function ReturnsAccessor.<lambda> at 0x15f5a9440>,
check_has_bm_returns=True,
tags='returns'
),
ann_return=dict(
title='Annualized Return [%]',
calc_func='annualized',
post_calc_func=<function ReturnsAccessor.<lambda> at 0x15f5a94e0>,
check_has_freq=True,
check_has_year_freq=True,
tags='returns'
),
ann_volatility=dict(
title='Annualized Volatility [%]',
calc_func='annualized_volatility',
post_calc_func=<function ReturnsAccessor.<lambda> at 0x15f5a9580>,
check_has_freq=True,
check_has_year_freq=True,
tags='returns'
),
max_dd=dict(
title='Max Drawdown [%]',
calc_func='drawdowns.get_max_drawdown',
post_calc_func=<function ReturnsAccessor.<lambda> at 0x15f5a9620>,
tags=[
'returns',
'drawdowns'
]
),
max_dd_duration=dict(
title='Max Drawdown Duration',
calc_func='drawdowns.get_max_duration',
fill_wrap_kwargs=True,
tags=[
'returns',
'drawdowns',
'duration'
]
),
sharpe_ratio=dict(
title='Sharpe Ratio',
calc_func='sharpe_ratio',
check_has_freq=True,
check_has_year_freq=True,
tags='returns'
),
calmar_ratio=dict(
title='Calmar Ratio',
calc_func='calmar_ratio',
check_has_freq=True,
check_has_year_freq=True,
tags='returns'
),
omega_ratio=dict(
title='Omega Ratio',
calc_func='omega_ratio',
check_has_freq=True,
check_has_year_freq=True,
tags='returns'
),
sortino_ratio=dict(
title='Sortino Ratio',
calc_func='sortino_ratio',
check_has_freq=True,
check_has_year_freq=True,
tags='returns'
),
skew=dict(
title='Skew',
calc_func='obj.skew',
tags='returns'
),
kurtosis=dict(
title='Kurtosis',
calc_func='obj.kurtosis',
tags='returns'
),
tail_ratio=dict(
title='Tail Ratio',
calc_func='tail_ratio',
tags='returns'
),
common_sense_ratio=dict(
title='Common Sense Ratio',
calc_func='common_sense_ratio',
check_has_freq=True,
check_has_year_freq=True,
tags='returns'
),
value_at_risk=dict(
title='Value at Risk',
calc_func='value_at_risk',
tags='returns'
),
alpha=dict(
title='Alpha',
calc_func='alpha',
check_has_freq=True,
check_has_year_freq=True,
check_has_bm_returns=True,
tags='returns'
),
beta=dict(
title='Beta',
calc_func='beta',
check_has_bm_returns=True,
tags='returns'
)
)
Returns ReturnsAccessor._metrics, which gets (hybrid-) copied upon creation of each instance. Thus, changing this config won't affect the class.
To change metrics, you can either change the config in-place, override this property, or overwrite the instance variable ReturnsAccessor._metrics.
omega_ratio method¶
ReturnsAccessor.omega_ratio(
risk_free=None,
required_return=None,
sim_start=None,
sim_end=None,
jitted=None,
chunked=None,
wrap_kwargs=None
)
Omega ratio.
See omega_ratio_nb().
parse_ann_factor class method¶
Parse annualization factor from a datetime index.
period property¶
Period.
plot_cumulative method¶
ReturnsAccessor.plot_cumulative(
column=None,
bm_returns=None,
start_value=1,
sim_start=None,
sim_end=None,
fit_sim_range=True,
fill_to_benchmark=False,
main_kwargs=None,
bm_kwargs=None,
pct_scale=False,
hline_shape_kwargs=None,
add_trace_kwargs=None,
xref='x',
yref='y',
fig=None,
**layout_kwargs
)
Plot cumulative returns.
Args
column:str- Name of the column to plot.
bm_returns:array_like- Benchmark return to compare returns against. Will broadcast per element.
start_value:float- The starting value.
sim_start:int,datetime_like,or array_like- Simulation start row or index (inclusive).
sim_end:int,datetime_like,or array_like- Simulation end row or index (exclusive).
fit_sim_range:bool- Whether to fit figure to simulation range.
fill_to_benchmark:bool- Whether to fill between main and benchmark, or between main and
start_value. main_kwargs:dict- Keyword arguments passed to GenericAccessor.plot() for main.
bm_kwargs:dict- Keyword arguments passed to GenericAccessor.plot() for benchmark.
pct_scale:bool- Whether to use the percentage scale for the y-axis.
hline_shape_kwargs:dict- Keyword arguments passed to
plotly.graph_objects.Figure.add_shapeforstart_valueline. add_trace_kwargs:dict- Keyword arguments passed to
add_trace. xref:str- X coordinate axis.
yref:str- Y coordinate axis.
fig:FigureorFigureWidget- Figure to add traces to.
**layout_kwargs- Keyword arguments for layout.
Usage
>>> np.random.seed(0)
>>> rets = pd.Series(np.random.uniform(-0.05, 0.05, size=100))
>>> bm_returns = pd.Series(np.random.uniform(-0.05, 0.05, size=100))
>>> rets.vbt.returns.plot_cumulative(bm_returns=bm_returns).show()
plots_defaults property¶
Defaults for PlotsBuilderMixin.plots().
Merges GenericAccessor.plots_defaults, defaults from ReturnsAccessor.defaults (acting as settings), and plots from returns
prob_sharpe_ratio method¶
ReturnsAccessor.prob_sharpe_ratio(
bm_returns=None,
risk_free=None,
ddof=None,
bias=True,
wrap_kwargs=None
)
Probabilistic Sharpe Ratio (PSR).
profit_factor method¶
ReturnsAccessor.profit_factor(
sim_start=None,
sim_end=None,
jitted=None,
chunked=None,
wrap_kwargs=None
)
Profit factor.
See profit_factor_nb().
qs property¶
Quantstats adapter.
resample method¶
Perform resampling on ReturnsAccessor.
resample_returns method¶
Resample returns to a custom frequency, date offset, or index.
resolve_column_stack_kwargs class method¶
Resolve keyword arguments for initializing ReturnsAccessor after stacking along columns.
resolve_row_stack_kwargs class method¶
Resolve keyword arguments for initializing ReturnsAccessor after stacking along rows.
resolve_self method¶
ReturnsAccessor.resolve_self(
cond_kwargs=None,
custom_arg_names=None,
impacts_caching=True,
silence_warnings=False
)
Resolve self.
Creates a copy of this instance year_freq is different in cond_kwargs.
rolling_alpha method¶
ReturnsAccessor.rolling_alpha(
window=None,
*,
minp=None,
bm_returns=None,
risk_free=None,
sim_start=None,
sim_end=None,
jitted=None,
chunked=None,
wrap_kwargs=None
)
Rolling alpha.
See rolling_alpha_nb().
rolling_annualized method¶
ReturnsAccessor.rolling_annualized(
window=None,
*,
minp=None,
sim_start=None,
sim_end=None,
jitted=None,
chunked=None,
wrap_kwargs=None
)
Rolling annualized return.
See rolling_annualized_return_nb().
rolling_annualized_volatility method¶
ReturnsAccessor.rolling_annualized_volatility(
window=None,
*,
minp=None,
levy_alpha=None,
ddof=None,
sim_start=None,
sim_end=None,
jitted=None,
chunked=None,
wrap_kwargs=None
)
Rolling annualized volatility.
See rolling_annualized_volatility_nb().
rolling_beta method¶
ReturnsAccessor.rolling_beta(
window=None,
*,
minp=None,
bm_returns=None,
ddof=None,
sim_start=None,
sim_end=None,
jitted=None,
chunked=None,
wrap_kwargs=None
)
Rolling beta.
See rolling_beta_nb().
rolling_calmar_ratio method¶
ReturnsAccessor.rolling_calmar_ratio(
window=None,
*,
minp=None,
sim_start=None,
sim_end=None,
jitted=None,
chunked=None,
wrap_kwargs=None
)
Rolling Calmar ratio.
See rolling_calmar_ratio_nb().
rolling_capture_ratio method¶
ReturnsAccessor.rolling_capture_ratio(
window=None,
*,
minp=None,
bm_returns=None,
sim_start=None,
sim_end=None,
jitted=None,
chunked=None,
wrap_kwargs=None
)
Rolling capture ratio.
See rolling_capture_ratio_nb().
rolling_common_sense_ratio method¶
ReturnsAccessor.rolling_common_sense_ratio(
window=None,
*,
minp=None,
sim_start=None,
sim_end=None,
jitted=None,
chunked=None,
wrap_kwargs=None
)
Rolling Common Sense Ratio (CSR).
See rolling_common_sense_ratio_nb().
rolling_cond_value_at_risk method¶
ReturnsAccessor.rolling_cond_value_at_risk(
window=None,
*,
minp=None,
cutoff=None,
sim_start=None,
sim_end=None,
noarr_mode=True,
jitted=None,
chunked=None,
wrap_kwargs=None
)
Rolling Conditional Value at Risk (CVaR).
See rolling_cond_value_at_risk_nb().
rolling_down_capture_ratio method¶
ReturnsAccessor.rolling_down_capture_ratio(
window=None,
*,
minp=None,
bm_returns=None,
sim_start=None,
sim_end=None,
jitted=None,
chunked=None,
wrap_kwargs=None
)
Rolling down-market capture ratio.
See rolling_down_capture_ratio_nb().
rolling_downside_risk method¶
ReturnsAccessor.rolling_downside_risk(
window=None,
*,
minp=None,
required_return=None,
sim_start=None,
sim_end=None,
jitted=None,
chunked=None,
wrap_kwargs=None
)
Rolling downside risk.
See rolling_downside_risk_nb().
rolling_final_value method¶
ReturnsAccessor.rolling_final_value(
window=None,
*,
minp=None,
start_value=None,
sim_start=None,
sim_end=None,
jitted=None,
chunked=None,
wrap_kwargs=None
)
Rolling final value.
rolling_information_ratio method¶
ReturnsAccessor.rolling_information_ratio(
window=None,
*,
minp=None,
bm_returns=None,
ddof=None,
sim_start=None,
sim_end=None,
jitted=None,
chunked=None,
wrap_kwargs=None
)
Rolling information ratio.
See rolling_information_ratio_nb().
rolling_max_drawdown method¶
ReturnsAccessor.rolling_max_drawdown(
window=None,
*,
minp=None,
sim_start=None,
sim_end=None,
jitted=None,
chunked=None,
wrap_kwargs=None
)
Rolling Maximum Drawdown (MDD).
See rolling_max_drawdown_nb().
rolling_omega_ratio method¶
ReturnsAccessor.rolling_omega_ratio(
window=None,
*,
minp=None,
risk_free=None,
required_return=None,
sim_start=None,
sim_end=None,
jitted=None,
chunked=None,
wrap_kwargs=None
)
Rolling Omega ratio.
rolling_profit_factor method¶
ReturnsAccessor.rolling_profit_factor(
window=None,
*,
minp=None,
sim_start=None,
sim_end=None,
jitted=None,
chunked=None,
wrap_kwargs=None
)
Rolling profit factor.
See rolling_profit_factor_nb().
rolling_sharpe_ratio method¶
ReturnsAccessor.rolling_sharpe_ratio(
window=None,
*,
minp=None,
annualized=True,
risk_free=None,
ddof=None,
sim_start=None,
sim_end=None,
stream_mode=True,
jitted=None,
chunked=None,
wrap_kwargs=None
)
Rolling Sharpe ratio.
See rolling_sharpe_ratio_nb().
rolling_sortino_ratio method¶
ReturnsAccessor.rolling_sortino_ratio(
window=None,
*,
minp=None,
required_return=None,
sim_start=None,
sim_end=None,
jitted=None,
chunked=None,
wrap_kwargs=None
)
Rolling Sortino ratio.
See rolling_sortino_ratio_nb().
rolling_tail_ratio method¶
ReturnsAccessor.rolling_tail_ratio(
window=None,
*,
minp=None,
sim_start=None,
sim_end=None,
noarr_mode=True,
jitted=None,
chunked=None,
wrap_kwargs=None
)
Rolling tail ratio.
rolling_total method¶
ReturnsAccessor.rolling_total(
window=None,
*,
minp=None,
sim_start=None,
sim_end=None,
jitted=None,
chunked=None,
wrap_kwargs=None
)
Rolling total return.
See rolling_total_return_nb().
rolling_up_capture_ratio method¶
ReturnsAccessor.rolling_up_capture_ratio(
window=None,
*,
minp=None,
bm_returns=None,
sim_start=None,
sim_end=None,
jitted=None,
chunked=None,
wrap_kwargs=None
)
Rolling up-market capture ratio.
See rolling_up_capture_ratio_nb().
rolling_value_at_risk method¶
ReturnsAccessor.rolling_value_at_risk(
window=None,
*,
minp=None,
cutoff=None,
sim_start=None,
sim_end=None,
noarr_mode=True,
jitted=None,
chunked=None,
wrap_kwargs=None
)
Rolling Value at Risk (VaR).
See rolling_value_at_risk_nb().
sharpe_ratio method¶
ReturnsAccessor.sharpe_ratio(
annualized=True,
risk_free=None,
ddof=None,
sim_start=None,
sim_end=None,
jitted=None,
chunked=None,
wrap_kwargs=None
)
Sharpe ratio.
See sharpe_ratio_nb().
sharpe_ratio_std method¶
Standard deviation of the sharpe ratio estimation.
sortino_ratio method¶
ReturnsAccessor.sortino_ratio(
required_return=None,
sim_start=None,
sim_end=None,
jitted=None,
chunked=None,
wrap_kwargs=None
)
Sortino ratio.
See sortino_ratio_nb().
stats_defaults property¶
Defaults for StatsBuilderMixin.stats().
Merges GenericAccessor.stats_defaults, defaults from ReturnsAccessor.defaults (acting as settings), and stats from returns
subplots class variable¶
Subplots supported by ReturnsAccessor.
HybridConfig(
plot_cumulative=dict(
title='Cumulative Returns',
yaxis_kwargs=dict(
title='Cumulative returns'
),
plot_func='plot_cumulative',
pass_hline_shape_kwargs=True,
pass_add_trace_kwargs=True,
pass_xref=True,
pass_yref=True,
tags='returns'
)
)
Returns ReturnsAccessor._subplots, which gets (hybrid-) copied upon creation of each instance. Thus, changing this config won't affect the class.
To change subplots, you can either change the config in-place, override this property, or overwrite the instance variable ReturnsAccessor._subplots.
tail_ratio method¶
ReturnsAccessor.tail_ratio(
sim_start=None,
sim_end=None,
noarr_mode=True,
jitted=None,
chunked=None,
wrap_kwargs=None
)
Tail ratio.
See tail_ratio_nb().
total method¶
Total return.
See total_return_nb().
up_capture_ratio method¶
ReturnsAccessor.up_capture_ratio(
bm_returns=None,
period=None,
sim_start=None,
sim_end=None,
jitted=None,
chunked=None,
wrap_kwargs=None
)
Up-market capture ratio.
value_at_risk method¶
ReturnsAccessor.value_at_risk(
cutoff=None,
sim_start=None,
sim_end=None,
noarr_mode=True,
jitted=None,
chunked=None,
wrap_kwargs=None
)
Value at Risk (VaR).
See value_at_risk_nb().
year_freq property¶
Year frequency.
year_freq_depends_on_index class method¶
Return whether frequency depends on index.
ReturnsDFAccessor class¶
ReturnsDFAccessor(
wrapper,
obj=None,
bm_returns=None,
year_freq=None,
defaults=None,
sim_start=None,
sim_end=None,
**kwargs
)
Accessor on top of return series. For DataFrames only.
Accessible via pd.DataFrame.vbt.returns.
Superclasses
- Analyzable
- AttrResolverMixin
- BaseAccessor
- BaseDFAccessor
- Cacheable
- Chainable
- Comparable
- Configured
- ExtPandasIndexer
- GenericAccessor
- GenericDFAccessor
- HasSettings
- IndexApplier
- IndexingBase
- Itemable
- PandasIndexer
- Paramable
- Pickleable
- PlotsBuilderMixin
- Prettified
- ReturnsAccessor
- SimRangeMixin
- StatsBuilderMixin
- Wrapping
Inherited members
- AttrResolverMixin.deep_getattr()
- AttrResolverMixin.post_resolve_attr()
- AttrResolverMixin.pre_resolve_attr()
- AttrResolverMixin.resolve_attr()
- AttrResolverMixin.resolve_shortcut_attr()
- BaseAccessor.align()
- BaseAccessor.align_to()
- BaseAccessor.apply()
- BaseAccessor.apply_and_concat()
- BaseAccessor.apply_to_index()
- BaseAccessor.broadcast()
- BaseAccessor.broadcast_combs()
- BaseAccessor.broadcast_to()
- BaseAccessor.column_stack()
- BaseAccessor.combine()
- BaseAccessor.concat()
- BaseAccessor.cross()
- BaseAccessor.cross()
- BaseAccessor.cross_with()
- BaseAccessor.empty()
- BaseAccessor.empty_like()
- BaseAccessor.eval()
- BaseAccessor.get()
- BaseAccessor.indexing_setter_func()
- BaseAccessor.items()
- BaseAccessor.make_symmetric()
- BaseAccessor.repeat()
- BaseAccessor.resolve_shape()
- BaseAccessor.row_stack()
- BaseAccessor.set()
- BaseAccessor.set_between()
- BaseAccessor.split()
- BaseAccessor.split_apply()
- BaseAccessor.tile()
- BaseAccessor.to_1d_array()
- BaseAccessor.to_2d_array()
- BaseAccessor.to_data()
- BaseAccessor.to_dict()
- BaseAccessor.unstack_to_array()
- BaseAccessor.unstack_to_df()
- Cacheable.get_ca_setup()
- Chainable.pipe()
- Configured.copy()
- Configured.equals()
- Configured.get_writeable_attrs()
- Configured.prettify()
- Configured.replace()
- Configured.resolve_merge_kwargs()
- Configured.update_config()
- GenericAccessor.ago()
- GenericAccessor.all_ago()
- GenericAccessor.any_ago()
- GenericAccessor.apply_along_axis()
- GenericAccessor.apply_and_reduce()
- GenericAccessor.apply_mapping()
- GenericAccessor.areaplot()
- GenericAccessor.barplot()
- GenericAccessor.bfill()
- GenericAccessor.binarize()
- GenericAccessor.boxplot()
- GenericAccessor.bshift()
- GenericAccessor.column_apply()
- GenericAccessor.corr()
- GenericAccessor.count()
- GenericAccessor.cov()
- GenericAccessor.crossed_above()
- GenericAccessor.crossed_below()
- GenericAccessor.cumprod()
- GenericAccessor.cumsum()
- GenericAccessor.demean()
- GenericAccessor.describe()
- GenericAccessor.diff()
- GenericAccessor.digitize()
- GenericAccessor.ewm_mean()
- GenericAccessor.ewm_std()
- GenericAccessor.expanding_apply()
- GenericAccessor.expanding_corr()
- GenericAccessor.expanding_cov()
- GenericAccessor.expanding_idxmax()
- GenericAccessor.expanding_idxmin()
- GenericAccessor.expanding_max()
- GenericAccessor.expanding_mean()
- GenericAccessor.expanding_min()
- GenericAccessor.expanding_ols()
- GenericAccessor.expanding_rank()
- GenericAccessor.expanding_std()
- GenericAccessor.expanding_zscore()
- GenericAccessor.fbfill()
- GenericAccessor.ffill()
- GenericAccessor.fillna()
- GenericAccessor.find_pattern()
- GenericAccessor.flatten_grouped()
- GenericAccessor.fshift()
- GenericAccessor.get_ranges()
- GenericAccessor.groupby_apply()
- GenericAccessor.groupby_transform()
- GenericAccessor.heatmap()
- GenericAccessor.histplot()
- GenericAccessor.idxmax()
- GenericAccessor.idxmin()
- GenericAccessor.lineplot()
- GenericAccessor.ma()
- GenericAccessor.map()
- GenericAccessor.max()
- GenericAccessor.maxabs_scale()
- GenericAccessor.mean()
- GenericAccessor.median()
- GenericAccessor.min()
- GenericAccessor.minmax_scale()
- GenericAccessor.msd()
- GenericAccessor.normalize()
- GenericAccessor.overlay_with_heatmap()
- GenericAccessor.pct_change()
- GenericAccessor.plot()
- GenericAccessor.plot_against()
- GenericAccessor.plot_pattern()
- GenericAccessor.power_transform()
- GenericAccessor.product()
- GenericAccessor.proximity_apply()
- GenericAccessor.qqplot()
- GenericAccessor.quantile_transform()
- GenericAccessor.rank()
- GenericAccessor.realign()
- GenericAccessor.realign_closing()
- GenericAccessor.realign_opening()
- GenericAccessor.rebase()
- GenericAccessor.reduce()
- GenericAccessor.resample_apply()
- GenericAccessor.resample_between_bounds()
- GenericAccessor.resample_to_index()
- GenericAccessor.resolve_mapping()
- GenericAccessor.robust_scale()
- GenericAccessor.rolling_all()
- GenericAccessor.rolling_any()
- GenericAccessor.rolling_apply()
- GenericAccessor.rolling_corr()
- GenericAccessor.rolling_cov()
- GenericAccessor.rolling_idxmax()
- GenericAccessor.rolling_idxmin()
- GenericAccessor.rolling_max()
- GenericAccessor.rolling_mean()
- GenericAccessor.rolling_min()
- GenericAccessor.rolling_ols()
- GenericAccessor.rolling_pattern_similarity()
- GenericAccessor.rolling_prod()
- GenericAccessor.rolling_rank()
- GenericAccessor.rolling_std()
- GenericAccessor.rolling_sum()
- GenericAccessor.rolling_zscore()
- GenericAccessor.row_apply()
- GenericAccessor.scale()
- GenericAccessor.scatterplot()
- GenericAccessor.shuffle()
- GenericAccessor.squeeze_grouped()
- GenericAccessor.std()
- GenericAccessor.sum()
- GenericAccessor.to_daily_log_returns()
- GenericAccessor.to_daily_returns()
- GenericAccessor.to_log_returns()
- GenericAccessor.to_mapped()
- GenericAccessor.to_returns()
- GenericAccessor.transform()
- GenericAccessor.ts_heatmap()
- GenericAccessor.value_counts()
- GenericAccessor.vidya()
- GenericAccessor.volume()
- GenericAccessor.wm_mean()
- GenericAccessor.wwm_mean()
- GenericAccessor.wwm_std()
- GenericAccessor.zscore()
- GenericDFAccessor.band()
- GenericDFAccessor.plot_projections()
- HasSettings.get_path_setting()
- HasSettings.get_path_settings()
- HasSettings.get_setting()
- HasSettings.get_settings()
- HasSettings.has_path_setting()
- HasSettings.has_path_settings()
- HasSettings.has_setting()
- HasSettings.has_settings()
- HasSettings.reset_settings()
- HasSettings.resolve_setting()
- HasSettings.resolve_settings_paths()
- HasSettings.set_settings()
- IndexApplier.add_levels()
- IndexApplier.drop_duplicate_levels()
- IndexApplier.drop_levels()
- IndexApplier.drop_redundant_levels()
- IndexApplier.rename_levels()
- IndexApplier.select_levels()
- PandasIndexer.xs()
- Pickleable.decode_config()
- Pickleable.decode_config_node()
- Pickleable.dumps()
- Pickleable.encode_config()
- Pickleable.encode_config_node()
- Pickleable.file_exists()
- Pickleable.getsize()
- Pickleable.load()
- Pickleable.loads()
- Pickleable.modify_state()
- Pickleable.resolve_file_path()
- Pickleable.save()
- PlotsBuilderMixin.build_subplots_doc()
- PlotsBuilderMixin.override_subplots_doc()
- PlotsBuilderMixin.plots()
- ReturnsAccessor.alpha()
- ReturnsAccessor.ann_factor
- ReturnsAccessor.ann_factor_to_year_freq()
- ReturnsAccessor.annual()
- ReturnsAccessor.annualized()
- ReturnsAccessor.annualized_volatility()
- ReturnsAccessor.auto_detect_ann_factor()
- ReturnsAccessor.beta()
- ReturnsAccessor.bm_returns
- ReturnsAccessor.bm_returns_acc
- ReturnsAccessor.calmar_ratio()
- ReturnsAccessor.capture_ratio()
- ReturnsAccessor.cls_dir
- ReturnsAccessor.column_only_select
- ReturnsAccessor.common_sense_ratio()
- ReturnsAccessor.cond_value_at_risk()
- ReturnsAccessor.config
- ReturnsAccessor.cumulative()
- ReturnsAccessor.daily()
- ReturnsAccessor.deannualize()
- ReturnsAccessor.defaults
- ReturnsAccessor.deflated_sharpe_ratio()
- ReturnsAccessor.df_accessor_cls
- ReturnsAccessor.down_capture_ratio()
- ReturnsAccessor.downside_risk()
- ReturnsAccessor.drawdown()
- ReturnsAccessor.drawdowns
- ReturnsAccessor.final_value()
- ReturnsAccessor.from_value()
- ReturnsAccessor.get_ann_factor()
- ReturnsAccessor.get_bm_returns_acc()
- ReturnsAccessor.get_drawdowns()
- ReturnsAccessor.get_period()
- ReturnsAccessor.get_year_freq()
- ReturnsAccessor.group_select
- ReturnsAccessor.iloc
- ReturnsAccessor.indexing_func()
- ReturnsAccessor.indexing_kwargs
- ReturnsAccessor.information_ratio()
- ReturnsAccessor.loc
- ReturnsAccessor.log_returns
- ReturnsAccessor.mapping
- ReturnsAccessor.max_drawdown()
- ReturnsAccessor.obj
- ReturnsAccessor.omega_ratio()
- ReturnsAccessor.parse_ann_factor()
- ReturnsAccessor.period
- ReturnsAccessor.plot_cumulative()
- ReturnsAccessor.plots_defaults
- ReturnsAccessor.prob_sharpe_ratio()
- ReturnsAccessor.profit_factor()
- ReturnsAccessor.qs
- ReturnsAccessor.range_only_select
- ReturnsAccessor.ranges
- ReturnsAccessor.rec_state
- ReturnsAccessor.resample()
- ReturnsAccessor.resample_returns()
- ReturnsAccessor.resolve_column_stack_kwargs()
- ReturnsAccessor.resolve_row_stack_kwargs()
- ReturnsAccessor.resolve_self()
- ReturnsAccessor.rolling_alpha()
- ReturnsAccessor.rolling_annualized()
- ReturnsAccessor.rolling_annualized_volatility()
- ReturnsAccessor.rolling_beta()
- ReturnsAccessor.rolling_calmar_ratio()
- ReturnsAccessor.rolling_capture_ratio()
- ReturnsAccessor.rolling_common_sense_ratio()
- ReturnsAccessor.rolling_cond_value_at_risk()
- ReturnsAccessor.rolling_down_capture_ratio()
- ReturnsAccessor.rolling_downside_risk()
- ReturnsAccessor.rolling_final_value()
- ReturnsAccessor.rolling_information_ratio()
- ReturnsAccessor.rolling_max_drawdown()
- ReturnsAccessor.rolling_omega_ratio()
- ReturnsAccessor.rolling_profit_factor()
- ReturnsAccessor.rolling_sharpe_ratio()
- ReturnsAccessor.rolling_sortino_ratio()
- ReturnsAccessor.rolling_tail_ratio()
- ReturnsAccessor.rolling_total()
- ReturnsAccessor.rolling_up_capture_ratio()
- ReturnsAccessor.rolling_value_at_risk()
- ReturnsAccessor.self_aliases
- ReturnsAccessor.sharpe_ratio()
- ReturnsAccessor.sharpe_ratio_std()
- ReturnsAccessor.sim_duration
- ReturnsAccessor.sim_end
- ReturnsAccessor.sim_end_index
- ReturnsAccessor.sim_start
- ReturnsAccessor.sim_start_index
- ReturnsAccessor.sortino_ratio()
- ReturnsAccessor.sr_accessor_cls
- ReturnsAccessor.stats_defaults
- ReturnsAccessor.tail_ratio()
- ReturnsAccessor.total()
- ReturnsAccessor.up_capture_ratio()
- ReturnsAccessor.value_at_risk()
- ReturnsAccessor.wrapper
- ReturnsAccessor.xloc
- ReturnsAccessor.year_freq
- ReturnsAccessor.year_freq_depends_on_index()
- SimRangeMixin.column_stack_sim_end()
- SimRangeMixin.column_stack_sim_start()
- SimRangeMixin.fit_fig_to_sim_range()
- SimRangeMixin.get_sim_duration()
- SimRangeMixin.get_sim_end()
- SimRangeMixin.get_sim_end_index()
- SimRangeMixin.get_sim_start()
- SimRangeMixin.get_sim_start_index()
- SimRangeMixin.resample_sim_end()
- SimRangeMixin.resample_sim_start()
- SimRangeMixin.resolve_sim_end()
- SimRangeMixin.resolve_sim_end_value()
- SimRangeMixin.resolve_sim_start()
- SimRangeMixin.resolve_sim_start_value()
- SimRangeMixin.row_stack_sim_end()
- SimRangeMixin.row_stack_sim_start()
- SimRangeMixin.sim_end_indexing_func()
- SimRangeMixin.sim_start_indexing_func()
- StatsBuilderMixin.build_metrics_doc()
- StatsBuilderMixin.override_metrics_doc()
- StatsBuilderMixin.stats()
- Wrapping.as_param()
- Wrapping.regroup()
- Wrapping.resolve_stack_kwargs()
- Wrapping.select_col()
- Wrapping.select_col_from_obj()
ReturnsSRAccessor class¶
ReturnsSRAccessor(
wrapper,
obj=None,
bm_returns=None,
year_freq=None,
defaults=None,
sim_start=None,
sim_end=None,
**kwargs
)
Accessor on top of return series. For Series only.
Accessible via pd.Series.vbt.returns.
Superclasses
- Analyzable
- AttrResolverMixin
- BaseAccessor
- BaseSRAccessor
- Cacheable
- Chainable
- Comparable
- Configured
- ExtPandasIndexer
- GenericAccessor
- GenericSRAccessor
- HasSettings
- IndexApplier
- IndexingBase
- Itemable
- PandasIndexer
- Paramable
- Pickleable
- PlotsBuilderMixin
- Prettified
- ReturnsAccessor
- SimRangeMixin
- StatsBuilderMixin
- Wrapping
Inherited members
- AttrResolverMixin.deep_getattr()
- AttrResolverMixin.post_resolve_attr()
- AttrResolverMixin.pre_resolve_attr()
- AttrResolverMixin.resolve_attr()
- AttrResolverMixin.resolve_shortcut_attr()
- BaseAccessor.align()
- BaseAccessor.align_to()
- BaseAccessor.apply()
- BaseAccessor.apply_and_concat()
- BaseAccessor.apply_to_index()
- BaseAccessor.broadcast()
- BaseAccessor.broadcast_combs()
- BaseAccessor.broadcast_to()
- BaseAccessor.column_stack()
- BaseAccessor.combine()
- BaseAccessor.concat()
- BaseAccessor.cross()
- BaseAccessor.cross()
- BaseAccessor.cross_with()
- BaseAccessor.empty()
- BaseAccessor.empty_like()
- BaseAccessor.eval()
- BaseAccessor.get()
- BaseAccessor.indexing_setter_func()
- BaseAccessor.items()
- BaseAccessor.make_symmetric()
- BaseAccessor.repeat()
- BaseAccessor.resolve_shape()
- BaseAccessor.row_stack()
- BaseAccessor.set()
- BaseAccessor.set_between()
- BaseAccessor.split()
- BaseAccessor.split_apply()
- BaseAccessor.tile()
- BaseAccessor.to_1d_array()
- BaseAccessor.to_2d_array()
- BaseAccessor.to_data()
- BaseAccessor.to_dict()
- BaseAccessor.unstack_to_array()
- BaseAccessor.unstack_to_df()
- Cacheable.get_ca_setup()
- Chainable.pipe()
- Configured.copy()
- Configured.equals()
- Configured.get_writeable_attrs()
- Configured.prettify()
- Configured.replace()
- Configured.resolve_merge_kwargs()
- Configured.update_config()
- GenericAccessor.ago()
- GenericAccessor.all_ago()
- GenericAccessor.any_ago()
- GenericAccessor.apply_along_axis()
- GenericAccessor.apply_and_reduce()
- GenericAccessor.apply_mapping()
- GenericAccessor.areaplot()
- GenericAccessor.barplot()
- GenericAccessor.bfill()
- GenericAccessor.binarize()
- GenericAccessor.boxplot()
- GenericAccessor.bshift()
- GenericAccessor.column_apply()
- GenericAccessor.corr()
- GenericAccessor.count()
- GenericAccessor.cov()
- GenericAccessor.crossed_above()
- GenericAccessor.crossed_below()
- GenericAccessor.cumprod()
- GenericAccessor.cumsum()
- GenericAccessor.demean()
- GenericAccessor.describe()
- GenericAccessor.diff()
- GenericAccessor.digitize()
- GenericAccessor.ewm_mean()
- GenericAccessor.ewm_std()
- GenericAccessor.expanding_apply()
- GenericAccessor.expanding_corr()
- GenericAccessor.expanding_cov()
- GenericAccessor.expanding_idxmax()
- GenericAccessor.expanding_idxmin()
- GenericAccessor.expanding_max()
- GenericAccessor.expanding_mean()
- GenericAccessor.expanding_min()
- GenericAccessor.expanding_ols()
- GenericAccessor.expanding_rank()
- GenericAccessor.expanding_std()
- GenericAccessor.expanding_zscore()
- GenericAccessor.fbfill()
- GenericAccessor.ffill()
- GenericAccessor.fillna()
- GenericAccessor.find_pattern()
- GenericAccessor.flatten_grouped()
- GenericAccessor.fshift()
- GenericAccessor.get_ranges()
- GenericAccessor.groupby_apply()
- GenericAccessor.groupby_transform()
- GenericAccessor.heatmap()
- GenericAccessor.histplot()
- GenericAccessor.idxmax()
- GenericAccessor.idxmin()
- GenericAccessor.lineplot()
- GenericAccessor.ma()
- GenericAccessor.map()
- GenericAccessor.max()
- GenericAccessor.maxabs_scale()
- GenericAccessor.mean()
- GenericAccessor.median()
- GenericAccessor.min()
- GenericAccessor.minmax_scale()
- GenericAccessor.msd()
- GenericAccessor.normalize()
- GenericAccessor.overlay_with_heatmap()
- GenericAccessor.pct_change()
- GenericAccessor.plot()
- GenericAccessor.plot_against()
- GenericAccessor.plot_pattern()
- GenericAccessor.power_transform()
- GenericAccessor.product()
- GenericAccessor.proximity_apply()
- GenericAccessor.qqplot()
- GenericAccessor.quantile_transform()
- GenericAccessor.rank()
- GenericAccessor.realign()
- GenericAccessor.realign_closing()
- GenericAccessor.realign_opening()
- GenericAccessor.rebase()
- GenericAccessor.reduce()
- GenericAccessor.resample_apply()
- GenericAccessor.resample_between_bounds()
- GenericAccessor.resample_to_index()
- GenericAccessor.resolve_mapping()
- GenericAccessor.robust_scale()
- GenericAccessor.rolling_all()
- GenericAccessor.rolling_any()
- GenericAccessor.rolling_apply()
- GenericAccessor.rolling_corr()
- GenericAccessor.rolling_cov()
- GenericAccessor.rolling_idxmax()
- GenericAccessor.rolling_idxmin()
- GenericAccessor.rolling_max()
- GenericAccessor.rolling_mean()
- GenericAccessor.rolling_min()
- GenericAccessor.rolling_ols()
- GenericAccessor.rolling_pattern_similarity()
- GenericAccessor.rolling_prod()
- GenericAccessor.rolling_rank()
- GenericAccessor.rolling_std()
- GenericAccessor.rolling_sum()
- GenericAccessor.rolling_zscore()
- GenericAccessor.row_apply()
- GenericAccessor.scale()
- GenericAccessor.scatterplot()
- GenericAccessor.shuffle()
- GenericAccessor.squeeze_grouped()
- GenericAccessor.std()
- GenericAccessor.sum()
- GenericAccessor.to_daily_log_returns()
- GenericAccessor.to_daily_returns()
- GenericAccessor.to_log_returns()
- GenericAccessor.to_mapped()
- GenericAccessor.to_returns()
- GenericAccessor.transform()
- GenericAccessor.ts_heatmap()
- GenericAccessor.value_counts()
- GenericAccessor.vidya()
- GenericAccessor.volume()
- GenericAccessor.wm_mean()
- GenericAccessor.wwm_mean()
- GenericAccessor.wwm_std()
- GenericAccessor.zscore()
- GenericSRAccessor.fit_pattern()
- GenericSRAccessor.to_renko()
- GenericSRAccessor.to_renko_ohlc()
- HasSettings.get_path_setting()
- HasSettings.get_path_settings()
- HasSettings.get_setting()
- HasSettings.get_settings()
- HasSettings.has_path_setting()
- HasSettings.has_path_settings()
- HasSettings.has_setting()
- HasSettings.has_settings()
- HasSettings.reset_settings()
- HasSettings.resolve_setting()
- HasSettings.resolve_settings_paths()
- HasSettings.set_settings()
- IndexApplier.add_levels()
- IndexApplier.drop_duplicate_levels()
- IndexApplier.drop_levels()
- IndexApplier.drop_redundant_levels()
- IndexApplier.rename_levels()
- IndexApplier.select_levels()
- PandasIndexer.xs()
- Pickleable.decode_config()
- Pickleable.decode_config_node()
- Pickleable.dumps()
- Pickleable.encode_config()
- Pickleable.encode_config_node()
- Pickleable.file_exists()
- Pickleable.getsize()
- Pickleable.load()
- Pickleable.loads()
- Pickleable.modify_state()
- Pickleable.resolve_file_path()
- Pickleable.save()
- PlotsBuilderMixin.build_subplots_doc()
- PlotsBuilderMixin.override_subplots_doc()
- PlotsBuilderMixin.plots()
- ReturnsAccessor.alpha()
- ReturnsAccessor.ann_factor
- ReturnsAccessor.ann_factor_to_year_freq()
- ReturnsAccessor.annual()
- ReturnsAccessor.annualized()
- ReturnsAccessor.annualized_volatility()
- ReturnsAccessor.auto_detect_ann_factor()
- ReturnsAccessor.beta()
- ReturnsAccessor.bm_returns
- ReturnsAccessor.bm_returns_acc
- ReturnsAccessor.calmar_ratio()
- ReturnsAccessor.capture_ratio()
- ReturnsAccessor.cls_dir
- ReturnsAccessor.column_only_select
- ReturnsAccessor.common_sense_ratio()
- ReturnsAccessor.cond_value_at_risk()
- ReturnsAccessor.config
- ReturnsAccessor.cumulative()
- ReturnsAccessor.daily()
- ReturnsAccessor.deannualize()
- ReturnsAccessor.defaults
- ReturnsAccessor.deflated_sharpe_ratio()
- ReturnsAccessor.df_accessor_cls
- ReturnsAccessor.down_capture_ratio()
- ReturnsAccessor.downside_risk()
- ReturnsAccessor.drawdown()
- ReturnsAccessor.drawdowns
- ReturnsAccessor.final_value()
- ReturnsAccessor.from_value()
- ReturnsAccessor.get_ann_factor()
- ReturnsAccessor.get_bm_returns_acc()
- ReturnsAccessor.get_drawdowns()
- ReturnsAccessor.get_period()
- ReturnsAccessor.get_year_freq()
- ReturnsAccessor.group_select
- ReturnsAccessor.iloc
- ReturnsAccessor.indexing_func()
- ReturnsAccessor.indexing_kwargs
- ReturnsAccessor.information_ratio()
- ReturnsAccessor.loc
- ReturnsAccessor.log_returns
- ReturnsAccessor.mapping
- ReturnsAccessor.max_drawdown()
- ReturnsAccessor.obj
- ReturnsAccessor.omega_ratio()
- ReturnsAccessor.parse_ann_factor()
- ReturnsAccessor.period
- ReturnsAccessor.plot_cumulative()
- ReturnsAccessor.plots_defaults
- ReturnsAccessor.prob_sharpe_ratio()
- ReturnsAccessor.profit_factor()
- ReturnsAccessor.qs
- ReturnsAccessor.range_only_select
- ReturnsAccessor.ranges
- ReturnsAccessor.rec_state
- ReturnsAccessor.resample()
- ReturnsAccessor.resample_returns()
- ReturnsAccessor.resolve_column_stack_kwargs()
- ReturnsAccessor.resolve_row_stack_kwargs()
- ReturnsAccessor.resolve_self()
- ReturnsAccessor.rolling_alpha()
- ReturnsAccessor.rolling_annualized()
- ReturnsAccessor.rolling_annualized_volatility()
- ReturnsAccessor.rolling_beta()
- ReturnsAccessor.rolling_calmar_ratio()
- ReturnsAccessor.rolling_capture_ratio()
- ReturnsAccessor.rolling_common_sense_ratio()
- ReturnsAccessor.rolling_cond_value_at_risk()
- ReturnsAccessor.rolling_down_capture_ratio()
- ReturnsAccessor.rolling_downside_risk()
- ReturnsAccessor.rolling_final_value()
- ReturnsAccessor.rolling_information_ratio()
- ReturnsAccessor.rolling_max_drawdown()
- ReturnsAccessor.rolling_omega_ratio()
- ReturnsAccessor.rolling_profit_factor()
- ReturnsAccessor.rolling_sharpe_ratio()
- ReturnsAccessor.rolling_sortino_ratio()
- ReturnsAccessor.rolling_tail_ratio()
- ReturnsAccessor.rolling_total()
- ReturnsAccessor.rolling_up_capture_ratio()
- ReturnsAccessor.rolling_value_at_risk()
- ReturnsAccessor.self_aliases
- ReturnsAccessor.sharpe_ratio()
- ReturnsAccessor.sharpe_ratio_std()
- ReturnsAccessor.sim_duration
- ReturnsAccessor.sim_end
- ReturnsAccessor.sim_end_index
- ReturnsAccessor.sim_start
- ReturnsAccessor.sim_start_index
- ReturnsAccessor.sortino_ratio()
- ReturnsAccessor.sr_accessor_cls
- ReturnsAccessor.stats_defaults
- ReturnsAccessor.tail_ratio()
- ReturnsAccessor.total()
- ReturnsAccessor.up_capture_ratio()
- ReturnsAccessor.value_at_risk()
- ReturnsAccessor.wrapper
- ReturnsAccessor.xloc
- ReturnsAccessor.year_freq
- ReturnsAccessor.year_freq_depends_on_index()
- SimRangeMixin.column_stack_sim_end()
- SimRangeMixin.column_stack_sim_start()
- SimRangeMixin.fit_fig_to_sim_range()
- SimRangeMixin.get_sim_duration()
- SimRangeMixin.get_sim_end()
- SimRangeMixin.get_sim_end_index()
- SimRangeMixin.get_sim_start()
- SimRangeMixin.get_sim_start_index()
- SimRangeMixin.resample_sim_end()
- SimRangeMixin.resample_sim_start()
- SimRangeMixin.resolve_sim_end()
- SimRangeMixin.resolve_sim_end_value()
- SimRangeMixin.resolve_sim_start()
- SimRangeMixin.resolve_sim_start_value()
- SimRangeMixin.row_stack_sim_end()
- SimRangeMixin.row_stack_sim_start()
- SimRangeMixin.sim_end_indexing_func()
- SimRangeMixin.sim_start_indexing_func()
- StatsBuilderMixin.build_metrics_doc()
- StatsBuilderMixin.override_metrics_doc()
- StatsBuilderMixin.stats()
- Wrapping.as_param()
- Wrapping.regroup()
- Wrapping.resolve_stack_kwargs()
- Wrapping.select_col()
- Wrapping.select_col_from_obj()